Automatic bone segmentation and alignment from MR knee images
نویسندگان
چکیده
Automatic image analysis of magnetic resonance (MR) images of the knee is simplified by bringing the knee into a reference position. While the knee is typically put into a reference position during image acquisition, this alignment will generally not be perfect. To correct for imperfections, we propose a two-step process of bone segmentation followed by elastic tissue deformation. The approach makes use of a fully-automatic segmentation of femur and tibia from T1 and T2* images. The segmentation algorithm is based on a continuous convex optimization problem, incorporating regional, and shape information. The regional terms are included from a probabilistic viewpoint, which readily allows the inclusion of shape information. Segmentation of the outer boundary of the cortical bone is encouraged by adding simple appearance-based information to the optimization problem. The resulting segmentation without the shape alignment step is globally optimal. Standard registration is problematic for knee alignment due to the distinct physical properties of the tissues constituting the knee (bone, muscle, etc.). We therefore develop an alternative alignment approach based on a simple elastic deformation model combined with strict enforcement of similarity transforms for femur and tibia based on the obtained segmentations.
منابع مشابه
Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملSemantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images
The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual cons...
متن کاملAutomated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.
OBJECTIVE To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. METHOD We analysed sagittal water-excited double-echo steady-state MR images of the knee from a subset of the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically segmented in the MR im...
متن کاملAutomatic joint alignment measurements in pre- and post-operative long leg standing radiographs.
OBJECTIVES For diagnosis or treatment assessment of knee joint osteoarthritis it is required to measure bone morphometry from radiographic images. We propose a method for automatic measurement of joint alignment from pre-operative as well as post-operative radiographs. METHODS In a two step approach we first detect and segment any implants or other artificial objects within the image. We expl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010